Integrating single-molecule experiments and discrete stochastic models to understand heterogeneous gene transcription dynamics.
نویسندگان
چکیده
The production and degradation of RNA transcripts is inherently subject to biological noise that arises from small gene copy numbers in individual cells. As a result, cellular RNA levels can exhibit large fluctuations over time and from one cell to the next. This article presents a range of precise single-molecule experimental techniques, based upon RNA fluorescence in situ hybridization, which can be used to measure the fluctuations of RNA at the single-cell level. A class of models for gene activation and deactivation is postulated in order to capture complex stochastic effects of chromatin modifications or transcription factor interactions. A computational tool, known as the finite state projection approach, is introduced to accurately and efficiently analyze these models in order to predict how probability distributions of RNA change over time in response to changing environmental conditions. These single-molecule experiments, discrete stochastic models, and computational analyses are systematically integrated to identify models of gene regulation dynamics. To illustrate the power and generality of our integrated experimental and computational approach, we explore cases that include different models for three different RNA types (sRNA, mRNA and nascent RNA), three different experimental techniques and three different biological species (bacteria, yeast and human cells).
منابع مشابه
Delayed Stochastic Model of Transcription at the Single Nucleotide Level
We present a delayed stochastic model of transcription at the single nucleotide level. The model accounts for the promoter open complex formation and includes alternative pathways to elongation, namely pausing, arrest, misincorporation and editing, pyrophosphorolysis, and premature termination. We confront the dynamics of this detailed model with a single-step multi-delayed stochastic model and...
متن کاملDynamic Heterogeneity and DNA Methylation in Embryonic Stem Cells
Cell populations can be strikingly heterogeneous, composed of multiple cellular states, each exhibiting stochastic noise in its gene expression. A major challenge is to disentangle these two types of variability and to understand the dynamic processes and mechanisms that control them. Embryonic stem cells (ESCs) provide an ideal model system to address this issue because they exhibit heterogene...
متن کاملUsing a new modified harmony search algorithm to solve multi-objective reactive power dispatch in deterministic and stochastic models
The optimal reactive power dispatch (ORPD) is a very important problem aspect of power system planning and is a highly nonlinear, non-convex optimization problem because consist of both continuous and discrete control variables. Since the power system has inherent uncertainty, hereby, this paper presents both of the deterministic and stochastic models for ORPD problem in multi objective and sin...
متن کاملInference of Kinetic Parameters of Delayed Stochastic Models of Gene Expression Using a Markov Chain Approximation
We propose a Markov chain approximation of the delayed stochastic simulation algorithm to infer properties of the mechanisms in prokaryote transcription from the dynamics of RNA levels. We model transcription using the delayed stochastic modelling strategy and realistic parameter values for rate of transcription initiation and RNA degradation. From the model, we generate time series of RNA leve...
متن کاملDeveloping a 3D stochastic discrete fracture network model for hydraulic analyses
Fluid flow in jointed rock mass with impermeable matrix is often controlled by joint properties, including aperture, orientation, spacing, persistence and etc. On the other hand, since the rock mass is made of heterogeneous and anisotropic natural materials, geometric properties of joints may have dispersed values. One of the most powerful methods for simulation of stochastic nature of geometri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Methods
دوره 85 شماره
صفحات -
تاریخ انتشار 2015